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Abstract. In the conception of mode-coupling theory the liquid–glass transition is due to
topological singularities (mathematical catastrophes) in a system’s parameter space. It is shown
that previously published dielectric relaxation data for a number of semicrystalline polymers
(polyalanine, polyglycine, nylon 3 and nylon 4) exhibit the characteristic signatures for anA4-
singularity: inflection points, linear regions in ln(ω), 1/f noise regions, as well as a double
minimum. Besides agreeing qualitatively with mode-coupling theory predictions, the data can
also be described quantitatively with theA4-scenario.

1. Introduction

During the past decade, the mode-coupling theory (MCT) of supercooled liquid dynamics
[1, 2] has evolved as a powerful theoretical tool for the study of the liquid–glass transition.
MCT is not only able to account for various time-honoured experimental results (like the
Kohlrausch–Williams–Watts stretched exponential [3, 4], the Curie–von Schweidler law [5],
or the Cole–Cole relaxation function [6]), but its highly non-trivial and empirically non-
obvious predictions have inspired a whole new set of experiments and instilled vigorous
activity in this long-researched area of condensed matter physics [7, 8]. Indeed, MCT offers
a new conceptual framework for a field in which empirical curve-fitting reigned supreme
for almost a century and a half.

From the very beginning, mode-coupling models for the liquid–glass transition were
controversial and the early simplified versions elicited much criticism, with the debate
carried on mainly by theorists [9, 10]. While there is substantial experimental support
for the most counter-intuitive predictions for the type B transition in the so-calledF12-
model of MCT from neutron and light scattering experiments in several materials [11–18],
MCT is still the centre of much controversy, with the attention shifting to experiments
[19–23]. Although the basic MCT equation can be derived from first principles for simple
liquids (i.e. monatomic fluids), theoretical results have been compared against relaxation
data from more complicated systems such as molecular liquids and amorphous, as well
as semicrystalline, polymers. While a basic assumption of the model, such as ‘monatomic
liquid’ seems to be flagrantly violated, the solution of the MCT equation entails a number of
assumptions whose dependence on (and sole derivability from) this simplifying assumption
is not at all clear. This brings to the fore a number of interesting questions pertaining to
the validity of various assumptions of MCT and the range of applicability of its results.
Moreover, the questions are moving targets since the theory is still evolving, and new
questions continue to arise.
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A key new idea introduced by MCT is that the universally observed features of the
glass transition are due to topological singularities (mathematical catastrophes [24, 25])
in a system’s parameter space. Close to a singularity, a system’s behaviour is governed
solely by the generic topological features of the singularity and is largely independent of its
microscopic make-up. The simplest types of mathematical catastrophe are of the cuspoid
type, and can describe relaxation spectra in materials as diverse as molecular and ionic
glasses (A2-singularity or Whitney fold) [1, 2], spin glasses (A3-singularity or Whitney
cusp) [26], and amorphous as well as semicrystalline polymers (A3-, A4-cuspoids) [27, 28].
Such a breadth of applicability for MCT results raises the prospect for a unified approach
to the immensely diverse field of relaxations in disordered systems.

It was suggested by Johari [29] that the notion of amorphous or disordered state be
extended from the classic random network (Zachariasen-type) and randomly packed spheres
(Bernal-type) materials, to encompass orientationally disordered crystals, liquid- crystalline
polymers, and even semicrystalline materials made of crystallites embedded in an amorphous
matrix. While Johari’s challenge has been partially picked up in the fields of orientationally
disordered crystals and liquid-crystalline polymers, until the advent of MCT there had been
little progress in the theoretical description of relaxations in semicrystalline materials, and
new insights were wanting. The applicability of MCT results to semicrystalline polymers is
quite controversial, and previous publications on this subject [27, 28] bring only plausibility
arguments in favour of MCT catastrophe scenarios. Questions concerning the microscopic
justification for the observed behaviour and the applicability of a model derived initially
for monatomic structureless liquids to complex systems such as polymers and, moreover,
to heterogeneous systems such as semicrystalline materials, were left largely unanswered.
At the present stage in the development of the theory some of these questions are probably
intractable, and the analysis of experimental data exhibiting the predicted patterns in a
variety of materials ought to shed more light on the problem and provide guidance for
the construction of new theoretical models. In as far as MCT results represent universal
features of the ubiquitous glass transition, the fact that they were derived with the simplest
possible models does not represent a major objection to their wider applicability, and should
therefore not impede the search for the predicted behaviour in experimental data.

It is the purpose of this paper to bring additional support for a catastrophe scenario
description of relaxations in disordered systems. As we shall see, the MCT description
can account for features in data which have no other analytical description. Moreover,
MCT-inspired analyses require fewer parameters than any of the popular fitting functions
in cases where data can also be described with empirical formulae. It will be shown that
previously published dielectric relaxation data on a series of semicrystalline nylons [30] are
consistent with theA4-singularity scenario of MCT and that the catastrophe scenario offers
a coherent picture for relaxation in these complex systems. While this will not answer any
of the previously mentioned questions, it will nevertheless increase the plausibility of the
MCT scenarios. The analysis presented here can also contribute to the formation of classes
of materials according to the mathematical singularities exhibited by their spectra, and this
should help in understanding their microscopic underpinnings and offer clues for theoretical
model building.

2. Catastrophe scenarios in MCT

The relaxation spectra in glassy systems can be described as bifurcation singularities [24,
25] of the cuspoid typeAk (k = 2, 3, 4, . . .) [1, 2, 26, 27, 28]. Higher-order singularitiesAk

contain lower-order singularitiesAj (j < k) as special limits, and the lower-order relaxation
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patterns are distorted due to higher-order precursors. The various singularities exhibit
distinct signatures in susceptibility spectraε′′(ω), through which they can be identified.

In the simplest case, for the schematic (i.e. ignoring all wave-vector contributions
to the relaxation term of the memory function, except those from a thin spherical shell
close to the peak of the static structure factor) and simplified (or ‘idealized’, that is,
not including phonon-assisted hopping effects) model (often mislabelled as ‘the’ mode-
coupling theory), the catastrophes are anA2-fold or a degenerateA3-singularity. At high
temperatures(T > Tc, with Tc the MCT critical temperature) the theory predicts a white-
noise spectrum(ε′′ ∼ ω + 1) on the low-frequency side of the primary (orα-) relaxation
peak and the Curie–von Schweidler law(ε′′ ∼ ω−b) on its high-frequency side, followed
by a power-law(ε′′ ∼ ω+a) characteristic for the secondary (orβ-) relaxation [1, 2].
The value ofTc is not predicted by theory, but has been determined experimentally to be
situated 30 K to 60 K above the calorimetric glass transition temperatureTg, and is material
dependent. The exponentsa and b are not independent; they are uniquely determined
by the so-called exponent parameterλ. The two power laws with exponentsa and b

give rise to a susceptibility minimum at some frequencyω∗, where the spectrum amplitude
ε′′(ω∗; T ) = ε′′

min is predicted to follow a square-root dependence on temperature difference.
These signatures can be summarized as follows:

ε′′(ωs)

ε′′
min

= 1

a + b

[
aω−b

s + bωa
s

]
(1)

λ = 02(1 − a)

0(1 − 2a)
= 02(1 + b)

0(1 + 2b)
(2)

ε′′
min ∝

√
|T − Tc| (3)

with ωs = ω/ω∗ a scaled frequency and0 the gamma function. Equation (1) is a convenient
interpolation formula for experimental data and indicates that, in theα–β crossover region,
spectra corresponding to different temperatures close toTc will fall on a master curve.
At low temperatures(T < Tc) the α-peak and the Curie–von Schweidler law in its high-
frequency wing disappear. There exists only a white-noise spectrum(ε′′ ∼ ω+1), followed
by theβ-relaxation power law(ε′′ ∼ ω+a). These power laws will yield a ‘knee’ (i.e. break
in slope) forε′′(ω) at some frequencyω∗, with the corresponding susceptibility spectrum
value ε′′(ω∗; T ) still obeying equation (3). For the extended MCT model (which includes
phonon-assisted hopping effects) [31], the minimum persists into the glassy region, and the
functional behaviour of the susceptibility spectra becomes more complicated.

In the case of higher-order singularitiesAk (k > 2), MCT yields a universal description
of susceptibilities in terms of elliptic functions [27, 28]:

ε = fc − εcp

[
ln

(
1

ωtm

)]
(4a)

ε′′ = −π

2
εcp

′
[

ln

(
1

ωtm

)]
. (4b)

Here fc represents the non-ergodicity (or Edwards–Anderson) parameter on the critical
surface which separates the liquid and glassy states in the parameter space of the system,
εc is a critical amplitude andtm is the microscopic time-scale for the short-time transient
motion of the system.p(u) is the inverse function of the elliptic integral:

u =
∫ ∞

p

ds√
S(s)

(5)

andp′(u) its first derivative.
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For anA4-singularity, the integrand has the form

S(u) = u4 − g2u
2 − g3u − g4. (6)

The coefficientsgk are the so-called separation parameters, i.e. mathematical control
parameters indicating the distance from the singularity, and represent the coupling constants
of the theory. They can be mapped onto the physical control parameters of a system
through a smooth non-linear transformation, which can be linearized in the vicinity of
the singularities. The pattern which is unique for anA4-singularity is characterized by
the existence of a horizontal inflection point on either side of the minimum situated at
ω∗. Depending on a system’s path in parameter space, the spectra can also exhibit linear
variations ofε′′(ω) with ln(ω), double minima or 1/f noise regions (characterized by a
‘flat’, i.e. frequency-independent spectrum). These patterns result from equations (4)–(6) in
various limits [28].

3. Data analysis

Dielectric relaxation data were obtained through digitization of the original figures from
an article by Ẅolfle and Stoll [30]. Log–log plots were used for most data, due to the
wide range of variation forε′′(ω) (almost three decades), for easy detection of the predicted
power laws and in order to amplify any distortions of theA2-pattern. Semi-logarithmic
plots (with linear ordinate) were used in cases whereε′′(ω) has an inflection point or a
linear variation in log(ω). The data were fitted to the various functional forms with the aid
of a Levenberg–Marquardt non-linear least-squares algorithm. The various parameters were
determined with relative errors ranging from 5 to 30%, depending mainly on the scatter in
the experimental data.

The starting point of the analysis consists of isothermal susceptibility spectraε′′(ω),
covering frequency windows of 8 to 10 decades. As a first step one tries to identify the
singularity scenario (Ak, k > 2) exhibited by the data, using characteristic signatures and
asymptotic solutions for MCT models (usually over more limited frequency intervals). This
can also yield preliminary values for the various parameters. Once an identification has
been achieved, one can proceed with the second step and describe the data with the full
solution for the MCT model at hand (numerical, if necessary, as was done in [32]), and in
principle determine the path of the system in parameter space, i.e. the space of the separation
parametersgk. In practice the outlined procedure meets with varying degrees of success,
depending on the complexity of the spectra. The main stumbling block is the need to
provide good initial parameter guesses for the non-linear least-squares fitting algorithm. In
the case of anA2-singularity starting values for the various parameters can be easily found by
reading the values of the spectrum minimumε′′

min and the corresponding frequencyωmin off
the curves, and by determining the power-law exponentsa andb from linear fits of the high-
and low-frequency sides of the spectra, respectively. Fits for the frequency dependence of
theA2-spectra using the interpolation formula (1) (with or without the0-function constraint
(2) for the exponents) are then straightforward. Initial guesses for parameters in the case
of an A4-singularity are not so easily found. The existence of the shift factortm between
the ‘shape function’ (i.e. the elliptic function) and the data, as well as the evaluation of the
elliptic integral makes the non-linear fitting procedure particularly cumbersome. By using
the propertyp′(u) = −√

S(p(u)) of elliptic functions one can in part circumvent these
difficulties. Instead of fitting bothε′ andε′′ versus frequency, one can fitε′′ versusε′, thus
eliminating the need for calculating elliptic integrals and for knowingtm during this stage
of the analysis, and obtaing2, g3, g4, εc andfc. This procedure does not always work very
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Figure 1. Dielectric loss spectra for nylon 3. The lines for the 383 K and 343 K data represent
fits with equations (1) and (2), while the lines at 303 K constitute fits linear in log(f ). At 263 K
and 233 K one can observe well developed 1/f noise regions (frequency-independent spectra)
covering 4–5 decades of frequency.

well, since errors inε′ can cause serious difficulties with the non-linear least-squares fitting
algorithm. In [30] bothε′′ andε′ versus frequency were displayed on log–log plots. While
this data representation is well suited forε′′ (which varies by one to three orders of magnitude
over the available experimental frequency window, depending on the temperature), it causes
a significant loss of detail forε′ (which varies from almost constant at low temperatures to
one order of magnitude at the highest temperatures, over the same experimental frequency
window). Consequently, the digitization errors were larger forε′ than forε′′. The double-
logarithmic representation forε′′ and ε′ represents a particular handicap for the analysis
of ε′′-spectra which lack the hallmark signature of theA4-singularity (a minimum plus
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an inflection point) or a double minimum. This is why only a qualitative analysis was
possible for some of the data presented below. In cases where the spectra exhibit either a
double minimum, or a minimum and an inflection point, one can find initial guesses for the
parametersgk, εc andfc by solving a system of non-linear algebraic equations resulting from
the ε′- and ε′′-values at the given special points and the respective extremum conditions.
Once g2, g3 and g4 are determined, one calculates the elliptic integral (5) and finds the
value of the time-scaletm from a horizontal shift of (u, log(

√
S(p))) onto (log(f ), log(ε′′)).

This also provides a check for the previously determined value ofεc. The value forfc was
checked in a similar fashion, by shifting(u, p) onto (log(f ), ε′) on a semi-logarithmic plot.

In figure 1, theε′′-spectra for nylon 3 (Tg = 383 K) display a continuous change from a
slightly distortedA2-spectrum at 383 K (equations (1) and (2) still providing a fair fit over
eight decades in frequency, witha = 0.27 andb = 0.45, or λ = 0.81), through a strongly
distortedA2-spectrum but not exhibiting any clearA4-signature at 343 K (the data being
still well described by equations (1) and (2) over a limited frequency range of five decades,
with a = 0.23 andb = 0.36, or λ = 0.87), to a spectrum with linear regions in log(f ) at
303 K and spectra with flat high-frequency regions at 263 K and 233 K. The lines for the
data at 303 K (inset of figure 1) constitute fits linear in log(f ) covering 2 and 4.5 decades,
respectively at low and high frequencies. The 1/f noise regions at 263 K and 233 K exceed
four decades in frequency, as is evident from the frequency-independent (‘flat’) spectra. As
stated above, part of the data for nylon 3 can also be described by anA2-spectrum, but the
overall evolution of the spectra for this material indicates a higher-order (A4-) singularity.

The ε′′-spectra for nylon 4 (Tg = 353 K), displayed in figure 2, are very similar to
those for nylon 3. A fit with equations (1) and (2) accounts for the data over five decades
in frequency at 383 K (solid line) witha = 0.22 andb = 0.33, corresponding toλ = 0.88.
While at 383 K there is only a hint of distortion in the data, at 343 K it is quite pronounced.
The lines at 343 K and 303 K represent linear fits in log(f ), covering two to three decades,
both at low and high frequencies. At the lowest temperatures (263 K and 233 K) one can
observe once more a well developed 1/f noise region, extending over four to five decades in
frequency. From these signatures one may again conclude that the spectra for this material
are in qualitative agreement with the behaviour ofA4-singularity spectra.

Dielectric relaxation data for polyglycine (Tg = 403 K) are shown in figure 3. At every
temperature theε′′-spectra exhibit an inflection point at low frequency, which represents
the distinct signature of anA4-singularity. There is also a hint of a double minimum
in the high-frequency end of the 337 K spectrum, although its existence is not certain.
The solid lines represent fits with theA4-singularity formulae (4)–(6), with the following
parameter values: (O) g2 = 0.037, g3 = 0.0082, g4 = −0.0018, εc = 1.23, fc = 4.09, tm =
1.2 ns (T = 395 K); (◦) g2 = 0.046, g3 = 0.0057, g4 = −0.0017, εc = 1.05, fc =
3.98, tm = 9.8 ns (T = 369 K); (M) g2 = 0.023, g3 = 0.046, g4 = −0.000 84, εc =
1.33, fc = 3.92, tm = 42 ns(T = 337 K). TheA4-formulae can account for the data over
six decades in frequency, which matches or exceeds the goodness-of-fit range of any of the
popular empirical fitting functions. TheA4-fits depart from the data for 1–2 decades at high
frequencies.

In the case of dry polyalanine, fits with equations (1) and (2) (dotted lines) can
describe theε′′-spectra for 6–7 decades in frequency (figure 4), with power-law exponents
0.15 6 a 6 0.18 and 0.20 6 b 6 0.22 (corresponding to an exponent parameter
0.93 6 λ 6 0.95). The height of the minimum, however, does not vary like the square-root
of the absolute value of the temperature difference (as shown in the inset),ε′′

min having a
weaker than square-root dependence (figure 4 inset). The small number of data points does
not permit the identification of a functional dependence forε′′

min(T ) and it is not entirely
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Figure 2. Dielectric loss spectra for nylon 4. The spectrum is already distorted at 383 K, and
the fit with equations (1) and (2) is good only over 5–6 decades in frequency. Linear regions in
log(f ) exist in both the 343 K and 303 K data. The 1/f noise regions (‘flat’ spectra), at 263 K
and 233 K extend over 4–5 decades of frequency.

clear that the lack of
√|1T |-dependence is due exclusively to the existence of a higher-

order singularity. Typically, theA2-features have been observed to obtain forT > Tg.
Equations (1) and (2) have been used here in a temperature interval for which they are
‘not supposed to work’. Even with this caveat, the fact that theα–β crossover formula
(1) with the 0-function constraint (2) can account for the data over a frequency range
which matches or exceeds the goodness-of-fit range for any of the widely used empirical
fit formulae (Kohlrausch–Williams–Watts [3, 4], Cole–Cole [6], Cole–Davidson [33], or
the generalization of the latter two, Havriliak–Negami [34]), is quite remarkable. A critic
of the present analysis might argue that the frequency dependence for these spectra can
also be accounted for by a superposition of empirical fit functions. However, a spectrum
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Figure 3. Dielectric relaxation data for polyglycine. All of the spectra exhibit an inflection
point (at low frequencies), which is the most distinct signature of theA4-singularity. At
337 K there is a hint of double minimum in the data, which represents anotherA4-singularity
signature. Solid lines areA4-fits with the following parameter values: (O) g2 = 0.037, g3 =
0.0082, g4 = −0.0018, εc = 1.23, fc = 4.09, tm = 1.2 ns (T = 395 K); (◦) g2 =
0.046, g3 = 0.0057, g4 = −0.0017, εc = 1.05, fc = 3.98, tm = 9.8 ns (T = 369 K); (M)
g2 = 0.023, g3 = 0.046, g4 = −0.000 84, εc = 1.33, fc = 3.92, tm = 42 ns(T = 337 K).

which exhibits a minimum necessitates a linear combination of at least two empirical
formulae, which will amount to six or more adjustable parameters, i.e. more than double
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Figure 4. Dielectric loss spectra for dry polyalanine. The lines represent fits with equation (1),
subject to the constraint of equation (2).

√|1T |-dependence for the susceptibility minimum
does not obtain, as shown in the inset. The solid lines representA4-fits with parameters:
(N) g2 = −0.030, g3 = −0.0005, g4 = −0.000 05, εc = 1.18, tm = 160 fs (T = 386 K);
(�) g2 = −0.030, g3 = −0.0005, g4 = −0.000 05, εc = 0.97, tm = 2.2 ps (T = 357 K); (H)
g2 = −0.030, g3 = −0.0005, g4 = −0.000 05, εc = 1.01, tm = 34 ps(T = 328 K).

the number required by a fit with equations (1) and (2). (Since the relaxation is stretched,
a combination of two Debye relaxations—amounting to fewer parameters—will not do in
the present case.) One might suggest that the breakdown of the square-root dependence
for ε′′

min could be due to hopping processes. It has been shown [31] that phonon-assisted
hopping processes modify theA2-spectra quite drastically at temperaturesT < Tc: the
α–β crossover minimum still exists and the functional dependence of the spectrum on
frequency becomes more complicated, with two regimes separated byλ0 = π/4. Exponent
parameter values greater thanπ/4 (here λ > 0.9 > π/4) would require a constant
von Schweidler exponentb = 0.5, which is more than twice the values resulting from
the fits with equations (1) and (2). It is therefore unlikely that the observed behaviour
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can be explained through hopping processes and the data indicate more likely anA4-
rather than anA2-scenario. The solid lines in figure 4 represent fits for the Kramers–
Kronig pair (ε′, ε′′) with the A4-formulae (4)–(6), corresponding to parameter values: (N)
g2 = −0.030, g3 = −0.0005, g4 = −0.000 05, εc = 1.18, tm = 160 fs (T = 386 K); (�)
g2 = −0.030, g3 = −0.0005, g4 = −0.000 05, εc = 0.97, tm = 2.2 ps (T = 357 K); (H)
g2 = −0.030, g3 = −0.0005, g4 = −0.000 05, εc = 1.01, tm = 34 ps(T = 328 K). As can
be seen from the figure, the agreement between data and fits is improved, compared with
the A2-fits, extending for 6–8 frequency decades. Only the spectraε′′ were fitted in this
case, since data forε′ were not available.

In the case of polyalanine with 6% water content, equations (1) and (2) cannot describe
the ε′′-spectra at 260 K and 235 K (figure 5, dotted lines). The corresponding parameters
for the fits area = 0.209, b = 0.302, i.e.λ = 0.90, at 260 K anda = 0.240, b = 0.371,
i.e. λ = 0.86, at 235 K. There appears a linear log(f )-dependence in the spectrum at
203 K (covering four decades), which is a signature of theA4-singularity. The failure of
the A2-scenario to account for these data serves as a good counter-example, showing how
non-trivial the predictions embodied in equations (1) and (2) really are. One might argue
that it is quite easy to fit many minima with these two equations, as for dry polyalanine.
Figure 5 shows quite vividly that this is not the case, making the successfulA2-fits from
figure 4 that much more remarkable. TheA4-signature exhibited by the spectrum at
203 K in figure 5 is an indication that the failure of theA2-fits in this case may be
caused by the higher-order singularity, which distorts theA2-spectra. The solid lines in
figure 5 representA4-fits with the following parameter values: (N) g2 = −0.004, g3 =
−0.003, g4 = −0.000 27, εc = 3.30, fc = 3.41, tm = 140 fs atT = 260 K; (◦) g2 =
−0.004, g3 = −0.003, g4 = −0.000 27, εc = 2.90, fc = 3.47, tm = 3.9 ps atT = 235K;
(H) g2 = −0.001, g3 = −0.0032, g4 = −0.0003, εc = 2.34, fc = 3.36, tm = 440 ps at
T = 203 K. There is good agreement between data and fits over 6–7 decades in frequency,
with discrepancies occurring for 1–2 decades at the lowest frequencies.

4. Discussion

Polyglycine (nylon 2), polyalanine (an isomer of nylon 3), nylon 3 and nylon 4 represent
the simplest nylons. As can be seen from the figures 1–5, the dielectric relaxations for
these related materials exhibit all of the qualitative signatures of theA4-singularity and a
significant proportion of the data can be described quantitatively by theA4-formulae for
6–8 decades in frequency. The temperature dependences for all fit parameters listed in
the previous section are displayed in figure 6. While the number of points (three) for
each material is insufficient for attempting to derive functional forms tor the temperature
dependences, it can be seen that the time-scaletm decreases monotonically with temperature
in all cases over 2–4 orders of magnitude, which is physically reasonable. Although the
agreement between data and fits occurs over very wide frequency windows, there exist
systematic departures of the fits from the data for 1–2 decades at the lowest or highest
frequencies.A4-fits have also been attempted for nylon 3 and nylon 4 and succeed only for
highest-temperature data (383 K). It is also worth noting that someε′′-spectra (for nylon
3 at 303 K, as well as nylon 4 at 343 K and 303 K) exhibit two linear regions in log(ω)

and that the 1/f noise regions in the spectra (nylon 3 and nylon 4, at 263 K and 233 K
for both materials) are not bounded by increases inε′′, as predicted for anA4-singularity
scenario [28], but decrease or have a minimum at the lowest frequencies. There exist
several possible causes for these discrepancies. (1) As already stated in section 3, the fitting
procedure utilized in the current analysis requires accurate data for bothε′ and ε′′. These
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Figure 5. Dielectric relaxation data for polyalanine with 6% water content. The fits with formula
(1) and the constraint (2) clearly fail at 260 K (a = 0.209, b = 0.302, orλ = 0.90) and 235 K
(a = 0.240, b = 0.371 orλ = 0.86) (dotted lines). The spectrum at 203 K exhibits a linear region
in log(ω) over four decades in frequency, which is a signature typical for anA4-singularity.
The distortion of theA2-spectrum by the higher-order (A4-) precursor is the probable cause for
the poorA2-fits at 260 K and 235 K. The solid lines representA4-fits with parameters: (N)
g2 = −0.004, g3 = −0.003, g4 = −0.000 27, εc = 3.30, fc = 3.41, tm = 140 fs atT = 260 K;
(◦) g2 = −0.004, g3 = −0.003, g4 = −0.000 27, εc = 2.90, fc = 3.47, tm = 3.9 ps atT =
235 K; (H) g2 = −0.001, g3 = −0.0032, g4 = −0.0003, εc = 2.34, fc = 3.36, tm = 440 ps at
T = 203 K.
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Figure 6. Temperature dependences of the various fit parameters listed in the text:?, dry
polyglycine;•, dry polyalanine;◦, polyalanine with 6% H2O.

were not always available through the digitization of the figures from Wölfle and Stoll (ε′

and ε′′ being displayed with a logarithmic ordinate) and the inaccuracy inε′ might have
prevented a successful fitting. (The interested reader may inspect the low-temperatureε′-data
from figures 4–11 of [30].) The digitization errors forε′ were particularly large for nylon 3
and nylon 4 at the lower temperatures, sinceε′ exhibits a very weak frequency dependence
(much less than a factor of 2 over a frequency window of eight decades). (2) Equations
(4)–(6) represent asymptotic results for theA4-singularity, i.e. are valid only for parameter
values ‘close’ to the critical surface. It is possible that for a given set of experimental
data corrections to asymptotic results may come into play, since the distance from a MCT
singularity is not knowna priori for any given experiment. (3) It has been shown that
hopping processes can cause drastic modifications ofA2-spectra [31] and it is conceivable
that they can have similar effects for higher-order singularity spectra. At this moment it is
not clear whether or which of these possibilities cause the observed discrepancies.

One might argue that the previous data can also be fitted by polynomials. This is
indeed the case. However, MCT explains why the independent variable should be log(ω)

rather than the frequencyω itself, thus deriving (rather than assuming) the stretching of the
relaxation, while in the case of a polynomial fit the log(ω)-dependence must be taken as
an assumption. Moreover, the Kramers–Kronig relations impose an additional constraint
which cannot be satisfied by polynomials, and no empirical formulae can account for the
features in the data analysed here.

Of further concern might be the fact that some of the spectra analysed here correspond
to temperatures smaller thanTg, and one might argue that MCT does not apply under
these conditions. As can be seen from figures 1 and 2, the isothermal spectra for nylon
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3 and nylon 4 at a given temperature in the range 266–383 K are almost identical in
shape, although this temperature interval is belowTg for nylon 3, while it encompasses
Tg for nylon 4, and there is no feature in the spectra which singles outTg as a special
temperature. Also, the range of validity for the predictions of MCT models is determined
a posteriori, by experiment. The debate over the meaning ofTc and its connection with the
liquid–glass transition andTg is enlightening, and indicates how one ought to proceed when
comparing MCT predictions with experiments. MCT provides functional relationships for
the frequency dependence of susceptibility spectra, or for the variation of relaxation times
with temperature, but no absolute values for temperatures or time-scales. As a starting point
in testing MCT predictions, one must therefore find a range of experimental parameters over
which predictions for a given model agree with the data, and there are no constraints in this
search, other than that the values of the various experimentally determined parameters should
have physically reasonable values. Moreover, the glass transition temperatureTg is a strictly
empirically evolved concept, merely indicating that ‘something drastic’ has happened to the
supercooled liquid (e.g. the dramatic increase in viscosity by many orders of magnitude), its
value is determined by convention and it has no solid theoretical justification. Therefore it
should not prevent a constructive dialogue between experiment and theory, as is attempted
in the present work.

Besides the previously mentioned issues, several other points deserve attention and need
discussing. Although neutron and light scattering experiments have provided substantial
support for MCT and have detected many of the features that it predicts, there exists at
present a debate regarding the applicability of MCT results to the electrical susceptibility of
glass-forming materials. MCT considers the glass transition to be primarily a densification
effect, and the simplest models involve only the density–density correlation function. The
factorizationansatzfor time and wave-vector dependencies in correlation functions leads to
property-independent scaling laws in theα–β relaxation region for these models, i.e. various
susceptibilities ought to exhibit the same shapes. In physical terms, all observable
dynamics follows the dynamics of density fluctuations. This appears to be the case for
relatively simple liquids like a concentrated aqueous LiCl solution and the molten salt
[KNO3]0.6[Ca(NO3)2]0.4 [35, 36]. However, Nagel and co-workers [37, 38] have shown that
in some low-molecular-weight liquids (salol, glycerol, propylene glycol), the dielectric loss
ε′′(ω) does not exhibit a minimum at frequencies where there is a minimum in susceptibility
spectraχ ′′(ω) as determined from light and neutron scattering. This suggests that the
density–density correlation function may not always be relevant for dielectric relaxation, and
raises the question of whether results derived for the density–density correlation function can
be readily applied to susceptibilities derived from other correlation functions. In particular,
one might argue that such an over-extension of MCT results happens precisely in the present
article. Another problem is the huge difference between the characteristic time-scales for
theβ-relaxation as probed by light and neutron scattering and the time-scales derived from
dielectric relaxation. In addressing these objections, I remind the readers that extensive
studies by Johari and Goldstein have revealed the existence of both the primary(α-) and
secondary(β-) relaxations in a large number of molecular liquids [39, 40]. Also, recent
dielectric spectroscopy data on the molten salt [KNO3]0.6[Ca(NO3)2]0.4 from Loidl, Böhmer
and co-workers [41] provide evidence for the existence of aβ-minimum, and show that
the β-relaxation time-scale derived from dielectric relaxation is the same as that derived
from light and neutron scattering experiments. This indicates that the findings of Nagelet
al, while interesting in themselves, could represent exceptions rather than the rule, even
for liquids constituted of small molecules. An overall look at available dielectric relaxation
data for glass-forming liquids suggests that small-molecule glass formers exhibit a distinct
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behaviour, depending on whether they are ionic or constituted of polar molecules, and
that for some molecular liquids dipolar reorientations couple only very weakly to density
fluctuations. As far as the difference in typical time-scales seen in different experiments
is concerned, I emphasize the fact that MCT models do not provide absolute values for
time-scales, and that recent work by Götze and co-workers (see [42]) shows that a two-
correlator MCT model can account for the observed differences in relaxation dynamics,
and one may therefore conclude that MCT is able to reconcile the observed differences in
relaxation dynamics.

Regarding the objection that the results of MCT, which has been developed for simple
(monatomic) liquids, are not valid for systems as complicated as polymers, recent Monte
Carlo simulations indicate that MCT is able to describe quantitatively the relaxation
dynamics in supercooled polymers [43]. Furthermore, it is worth noting that the existence of
multiple relaxations in polymers is a well established fact [44]. In light of the accumulated
experimental evidence, it was first suggested by Williams [45] that the relaxation behaviour
in polymeric glasses be interpreted in a way which transcends the details of molecular motion
and does not require material-specific models, given the similarities between the relaxations
exhibited by glasses made from both polymeric and molecular liquids. This represents an
almost universally accepted view at present. MCT provides an explanation for theα- and
β-relaxations in precisely such a generic fashion, devoid of chemical specificity. Götze,
Sjögren and co-workers [1, 2, 27, 28] have shown that MCT results offer descriptions for
dielectric relaxation in many polymeric glass formers, where one would expect to find that
the motion of dipoles is more closely linked to the motion of the polymer chains as a
whole, and thus to the dynamics of density fluctuations. This conjecture is supported by
multi-dimensional NMR results from Spiess and co-workers (see [46]), who have shown
that main-chain motion must occur in polymers during the reorientation of a side-group. If
we were to take our clues from the interpretation of theβ-relaxation, which was explained
for many years throughad hocmaterial-specific models, it may well be the case that the
higher-order singularities (A3, A4), so far observed only in polymers, represent new classes
of generic relaxation behaviour in disordered systems.

A problem which might be worth addressing is the fact that relaxation patterns which
can be described through MCTA3- and A4-scenarios have been observed so far only in
polymeric systems exhibiting some degree of crystallinity (polyethylene terephthalate [27],
polyethylene oxybenzoate [27], polychloro-trifluoro ethylene [27, 28], polyoxymethylene
[28], nylon 610 [28], polyalanine, polyglycine, nylon 3 and nylon 4), and it is not clear
whether completely disordered systems can exhibit a relaxation behaviour which matches
A3- or A4-singularity signatures. Accounting for the relaxation dynamics in semicrystalline
materials, either with (Monte Carlo or molecular dynamics) computer simulations or
analytical models represents a daunting, if not intractable, theoretical problem. Additional
experimental investigation of various glass-forming materials may help to clarify this issue
and provide clues for theoretical model building.

One might also ask the following question: how can higher-order MCT singularities be
explored experimentally in a systematic fashion? The data analysed in the present article
indicate a possible way: starting with a material whose relaxation pattern matches theA2-
scenario, one must vary additional parameters besides temperature. It was suggested that
pressure [27] ought to provide the additional experimental ‘knob to tweak’. High-pressure
experiments are notoriously difficult, requiring very specialized equipment, and present
problems of accurate calibration, especially when one has to vary the temperature over a
wide range as well. A more easily accessible parameter would be composition, for binary
or multi-component glass formers. In the case of polymers, chain length and tacticity are
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two parameters which spring to mind immediately, as well as the addition of plasticizers
(or anti-plasticizers) and the systematic chemical variation of the monomer repeat unit.

The current analysis indicates that a thorough testing of MCT predictions and a search
for higher-order glass transition singularities necessitates data covering an exceptionally
wide frequency interval, well exceeding five decades. As illustrated in figures 1, 2 and 4,
data covering 4–6 decades in frequency can be accounted for quite easily with equations
(1) and (2). In cases where the material under investigation exhibits a relaxation behaviour
which can be successfully described within theA2-scenario, an exhaustive testing of MCT
predictions is possible with experiments involving the change in temperature over a wide
range and a limited experimental frequency window of 4–5 decades, as was shown by
Cummins and co-workers [15–17], since there exist more results for theA2-singularity than
those listed in equations (1)–(3). (This restriction was made for the purpose of the present
analysis.) In cases where some predictions for a given MCT model fail, while others still
obtain, a limited frequency window is insufficient for a blanket rejection of all MCT models,
and it becomes imperative that the data cover as wide a frequency window as possible. Even
in cases where data are collected over a sufficiently wide frequency window and exhibit
agreement with some predictions for a MCT model, but disagree with others (as is the
case with theA2-singularity and the data from [47]), the observed discrepancies might well
be due to distortions of lower-order singularity patterns in the vicinity of a higher-order
singularity, and rejection of MCT claims can be complete only if higher-order scenarios
also fail to account for the observed behaviour.

MCT models focused so far on those properties of glassy relaxation which are shared
by various systems, i.e. on universal results. In order to construct more realistic models
for the glass transition, one needs a microscopic understanding of these systems. The
nylons analysed here represent the simplest possible nylons. The origin of the dielectric
relaxation features in the various parts of the monomer repeat unit is well established
for these materials [30], and the MCT scenario describing their dielectric relaxation was
determined in the present work. This ought to provide an incentive for the construction of
microscopic models, to illuminate the underpinnings of the behaviour predicted by MCT.

5. Conclusions

There exists agreement between MCT predictions and the dielectric relaxation data for the
series of nylons discussed in the present article. The spectra exhibit all of the characteristic
signatures of anA4-singularity: inflection points, linear regions in ln(ω), 1/f noise regions,
as well as some evidence for a double minimum. The presence of the higher-order
(A4-) singularity causes a distortion of a lower-order (A2-) singularity pattern: (a) the
predicted

√|1T |-behaviour for the spectrum amplitude at theα–β crossover minimum
breaks down for dry polyalanine, although the spectra can be described with the constrained
α–β interpolation formula (equations (1) and (2)) over a remarkably wide frequency range;
(b) the addition of water to polyalanine distorts theA2-spectra beyond the ability of the
A2-formulae to account for the data and causes the appearance of anA4-signature at the
lowest temperature. TheA4-scenario can also account for the data in a quantitative fashion,
as illustrated by several examples for polyglycine and polyalanine.

MCT catastrophe scenarios offer a coherent picture for relaxations in these complex
systems and can describe complicated susceptibility data for which no competing analytical
descriptions exist. A critic of the mode-coupling approach might argue that MCT-inspired
data analyses are mere ‘curve-fitting exercises’. This is indeed, to some extent, the case
at the moment. A minimal-number-of-parameters fit inspired by theory is nevertheless to
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be preferred to empirical fits devoid of any justification other than that of a numerical
agreement with data.
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